Asymptotics of the Spectral Function for the Steklov Problem in a Family of Sets with Fractal Boundaries∗

نویسندگان

  • Juan Pablo Pinasco
  • Julio Daniel Rossi
  • J. P. Pinasco
چکیده

In this paper we find the asymptotic behavior of the spectral counting function for the Steklov problem in a family of self similar domains with fractal boundaries. Using renewal theory, we show that the main term in the asymptotics depends on the Minkowski dimension of the boundary. Also, we compute explicitly a three term expansion for a family of self similar sets, and a two term asymptotic expansion for a family of non self similar sets.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Inverse Problem for Interior Spectral Data of the Dirac Operator with Discontinuous Conditions

In this paper, we study the inverse problem for Dirac differential operators with  discontinuity conditions in a compact interval. It is shown that the potential functions can be uniquely determined by the value of the potential on some interval and parts of two sets of eigenvalues. Also, it is shown that the potential function can be uniquely determined by a part of a set of values of eigenfun...

متن کامل

Sloshing, Steklov and corners I: Asymptotics of sloshing eigenvalues

This is the first in a series of two papers aiming to establish sharp spectral asymptotics for Steklov type problems on planar domains with corners. In the present paper we focus on the two-dimensional sloshing problem, which is a mixed Steklov-Neumann boundary value problem describing small vertical oscillations of an ideal fluid in a container or in a canal with a uniform cross-section. We pr...

متن کامل

Fractal Study on Nuclear Boundary of Cancer Cells in Urinary Smears

  Background & Objectives: Cancer is a serious problem for human being and is becoming a serious problem day-by-day .A prerequisite for any therapeutic modality is early diagnosis. Automated cancer diagnosis by automatic image feature extraction procedures can be used as a feature extraction in the field of fractal dimension. The aim of this survey was to introduce a quantitative and objective...

متن کامل

Inverse Sturm-Liouville problems with a Spectral Parameter in the Boundary and transmission conditions

In this manuscript, we study the inverse problem for non self-adjoint Sturm--Liouville operator $-D^2+q$ with eigenparameter dependent boundary and discontinuity conditions inside a finite closed interval. By defining  a new Hilbert space and  using its spectral data of a kind, it is shown that the potential function can be uniquely determined by part of a set of values of eigenfunctions at som...

متن کامل

Reservoir Rock Characterization Using Wavelet Transform and Fractal Dimension

The aim of this study is to characterize and find the location of geological boundaries in different wells across a reservoir. Automatic detection of the geological boundaries can facilitate the matching of the stratigraphic layers in a reservoir and finally can lead to a correct reservoir rock characterization. Nowadays, the well-to-well correlation with the aim of finding the geological l...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004